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Abstract. Hilhorst’s result that the self-avoiding domain problem can be related to a slight 
generalisation of the Potts problem, of which it is the limiting case as n --f 0, is rederived by a 
different method. It is also shown that a further set of such models exist whose transition 
points can be located exactly by developing Potts’s original argument and it is shown to be a 
numerically reasonable hypothesis that the number of self-avoiding domains could be 
determined from the limiting case of these models as n + 0. Unfortunately, as we only 
possess the data for integral values of n, it is not entirely clear how to do this extrapolation. 

1. Introduction 

Hilhorst (1977) has pointed out a connection between the generating function for 
self-avoiding domains on the square lattice and the limit as n + 0 of a slight generalisa- 
tion of the Potts problem with 2n colours. For the new model we arrange the 2n colours 
on a circle or polygon (the colour chart) and give a weight enH to each pair of 
neighbouring sites that are coloured alike, a weight eCnH for a pair of neighbouring sites 
with complementary colours (at opposite points on the circle or polygon) and a weight 
of unity for all other types of pair. For n = 1 we have just the Ising model, for n = 2 ,  we 
can represent the four colours by the possible configurations of two spins on each site, 
and it is easily seen that the partition function factorises into the square of an Ising 
partition function. However, this information is insufficient to enable us to extrapolate 
to n = 0 and for n 2 3 we do not even know how to locate the transition. We shall show 
that the cases n = 1 and n = 2 can also be regarded as the first two of a series of more 
general models whose tranhitions can be precisely located by Potts’s (1952) trans- 
formation, and that these models also have a symmetry enabling us to conclude that the 
self-avoiding domain problem again appears as their limit as n + 0. In particular we can 
try to extrapolate the transition point data for finite n to determine the number of 
self-avoiding domains, the results being consistent with the accepted value of the 
‘connective constant’ for the plane square lattice. 

2. An alternative derivation of Hilhorst’s results 

Baxter (1973) pointed out that the generating function for the ordinary Potts model can 
be written as a Whitney-Tutte polynomial, that is to say as a sum over all subgraphs of 
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the lattice obtained by deleting one or more lines from it. If, in the Potts model, we give 
a weight of 1 +f to each pair of neighbouring sites coloured alike and a weight of 1 for 
each unlike pair of neighbouring sites, the generating function for any lattice can be 
written 

c SCf '  (1) 

where the sum is over subgraphs obtained by removing lines from the lattice, q is the 
number of possible colours, c is the number of connected components of the subgraphs 
and 1 is the number of lines it contains. (An isolated point is counted as a component.) 
If two or more sites are connected by an f factor (line) in a subgraph these two sites 
are coloured alike in that subgraph. (1) is actually true for any lattice, regular or 
irregular, and is easily proved by induction on the numbers of points and lines. 

For the Hilhorst model, we have q = 2n. We can split the graph into subgraphs as 
before, but this time a line between two sites can mean ei'fher that they are coloured 
alike or that they are coloured with complementary colours. For example, the 
generating function for a 'lattice' consisting of two points connected by a line is 

(2n)(2n - 2) + 2n enH + 2n e-nH (2) 

the second and third terms corresponding to the two sites coloured alike, and the two 
sites coloured with complementary colours, respectively. This may be written 

No extra terms are needed to take account of the two sites being coloured in two 
different but non-complementary colours because we are assigning a weight of unity to 
all such colourings. By analogy with (1) we may write (3) as 

We can easily show by induction that a connected subgraph of 1 lines without cycles 
induces a factor 2n( f l  + f 2 ) l ,  made up of the factor 2n for the connected component and 
f l + f 2  for each of the 1 lines. Choosing an f l  means that two adjacent points are 
coloured alike, choosing an f 2  means that they are coloured in complementary colours. 

If, however, we have a subgraph of 1 lines containing cycles we can no longer have a 
factor ( f l+f2) '  but we must remove some of these terms. For example, for a simple 
cycle the factor is 

because there must be an even number of f2 's in the cycle in order to obtain a 
permissible colouring of it. 

We can simplify some of the subgraph contributions as follows. If a subgraph has 
any vertex of degree unity we can remove it and again introduce a factor f l  + f 2  to allow 
for the possible colourings of this vertex and in this way we can progressively remove all 
tree-like portions, which we call 'whiskers', the subgraph contribution having a factor 
f l  + f i  for every line that is part of a 'whisker'. If we are left with a cycle expression (5 )  
applies, while the addition of bridges in general introduces further factors f l  + f 2 .  The 
fundamental reason why this model incorporates a preference for cycle graphs can be 
seen from (4) and (5). As n becomes smaller, f l  - f 2  = 2 sinh nH becomes progressively 
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larger than f l  if2 = 4 sinh' inH.  Since we are giving a weight smaller than unity to a 
complementary colouring of a pair of neighbouring sites f 2  is negative. Thus as II + 0 
the 'whiskers' and bridge graphs drop out. Hilhorst (1977) arrived at the same 
conclusion by another route. 

3. The Potts transformation 

Potts (1952) located the transition temperature of his model by an argument of which 
the following is a slight expansion, and his result has been confirmed by many later 
workers. Define operators as follows, a pair for each site: SA introduces a factor 0' if 
site A is of colour r;  t A :  if site A is of colour r, site A' is of colour r + l ,  where 
w = exp(2 i~ /2n) .  It is easily shown that the following operator selects configurations in 
which sites A and B are coloured alike 

(1 + SAS?-' + S ~ S F - ~  + , . . + s?-'sB)/2n ( 6 )  

and the operator (6') which selects configurations in which sites A and B are of 
complementary colours is obtained by changing the sign of the terms with odd powers of 
SA in (6). The operator describing the interaction between sites A and A' according to 
Hilhorst's model is 

1 + r A +  t i  +. . .+ ty-l +(eW - I ) +  (e-" - 1)tL. (7) 

Potts's transformation (1952) is a natural generalisation of Onsager's (1944). It is 
equivalent to the one-step replacements of operators as follows 

which can be done without any effect on the eigenvalues of the transfer matrix, because 
all these operators are 2nth roots of unity and each commutes with all the others except 
the two neighbours in its subseries in (8). (The commutation relation between any two 
neighbours in a given subseries is the same.) 

We now generalise the Hilhorst model. For the completely general Potts model, we 
give a weight a, to a nearest neighbour pair coloured alike, a ,  to a nearest neighbour 
pair coloured with colours s, s + 1 (any s) . . . and a, to a nearest neighbour pair coloured 
with colours s, s + r (any s). Such a model will transform into itself under the Potts 
transformation if 

JZnaO= ao+ a l +  az+.  . .+ ~ 2 , , - 1  

JZna ,  = ao+wal+w2a2+.  . .+wZn- 'azn-1  

J Z n a r = a o + w r a 1 + w 2 r a 2 + . . .  
(9) 

where w = e"'',,. 

satisfied by the critical values for the Potts model itself: 
It is easily found that these equations are not independent, and that they are always 

a,= 1 + J Z n  a ,=  a2=.  . .=  1. (10) 
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We also find (e.g. multiplying the a l  equation by w 2 ,  the a, equation by w2,  and adding) 
that a, = a2n-r. Thus the equations become 

J 2 n a o = a , 1 + 2 a l + 2 a 2 + .  , .+a ,  

I- 

d 2 n a , = a o - 2 a i + 2 a 2 - .  . . + a ,  

where 4 = r / n .  These equations are still not independent. 

that the problem becomes determinate if we impose the further conditions 
Although it has not been proved formally, examination of the cases n = 1-6 shows 

which are a natural generalisation of Hilhorst's model, and it is easy to generalise the 
argument for Hilhorst's model to show that these models also produce the same type of 
preference for cycle graphs as n -+ 0. 

We treat the generalised model by expanding the generating function as a general- 
ised Whitney-Tutte polynomial as before. In colouring the subgraphs, we assign a 
weight a,, - 1 to two neighbouring sites joined by a line coloured alike, and a,  - 1 if they 
are coloured by two colours r steps apart. To describe the possible colourings of a cyclic 
subgraph of length p, we need the diagonal sum of the pth powers of the cyclic matrix 

!I I1 a ,  - 1, a( ) -  1, a1- 1, a2- 1 
ao- 1, a1- 1, a2- 1, . . . 

. . .  

that is, the sum of the pth powers of the eigenvalues of (13). But the eigenvalues of (13 )  
are 

A 2 =  ao- 1 +2(a2-  1) COS 2 4  + 2 ( ~ 2 -  1) COS 4 4  +.  . . . 

These, however, are known from (1 1). We have 

If, as is the case, all the a's are positive but decrease as r increases, the largest eigenvalue 
is A l .  ( A o  is smaller because of the term 2n resulting from subtracting 1 from all the 
weights.) This does not affect the other eigenvalues. Now, if we have a subgraph 
containing a whisker, we can colour each vertex of order 1 with any of the 2n colours, 
giving the total weight a. - 1 + 2 ( a l  - 1) + 2(a2 - 1) . . . = Ao, whereas the weight given to 
each line in a subgraph consisting of a long cycle is effectively A l .  

Equations (11) and (12) have been solved for n = 1 to 6 with the following results 
(ta.ble I). 
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Table 1. 

1 1.55 0.64 
2 2.41 1.00 0.41 
3 3.42 1.77 0.565 0.29 
4 4.60 2.73 1.00 0.37 0.22 
5 5.85 3.85 1.58 0.63 0.26 0.17 
6 7.59 5.27 2.41 1.00 0.41 0.19 0.13 

n = 1 and n = 2 are Hilhorst’s cases. Note that for n even anIz is unity because of (12) 
from which we deduce the following values of A. and A I  (table 2). 

Table 2. 

n 1 2 3 4 5 6 

A 0 0.19 0.84 2.38 5.01 8.50 14.26 
A1 0.90 2.00 4.30 7.70 12.20 18.20 
Ao/hl  0.21 0.42 0.55 0.65 0.70 0.78 

These figures entirely confirm our expectations that as n + 0 the model should 
favour cycles over ‘whiskers’, and that as n becomes large all lines should become of 
equal weight. The accepted value of the number of self-avoiding domains from series 
expansions is 2.639 . . . which means that A I  should extrapolate to  about 0.379 and A. to 
zero as n -+ 0. These are quite consistent with the above values. 

Clearly A. and A must be definite functions of n, but since we only have them for 
integral values of n it is difficult to extrapolate accurately. 
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